Home
Scholarly Works
Artificial intelligence fracture recognition on...
Journal article

Artificial intelligence fracture recognition on computed tomography: review of literature and recommendations

Abstract

PurposeThe use of computed tomography (CT) in fractures is time consuming, challenging and suffers from poor inter-surgeon reliability. Convolutional neural networks (CNNs), a subset of artificial intelligence (AI), may overcome shortcomings and reduce clinical burdens to detect and classify fractures. The aim of this review was to summarize literature on CNNs for the detection and classification of fractures on CT scans, focusing on its accuracy and to evaluate the beneficial role in daily practice.MethodsLiterature search was performed according to the PRISMA statement, and Embase, Medline ALL, Web of Science Core Collection, Cochrane Central Register of Controlled Trials and Google Scholar databases were searched. Studies were eligible when the use of AI for the detection of fractures on CT scans was described. Quality assessment was done with a modified version of the methodologic index for nonrandomized studies (MINORS), with a seven-item checklist. Performance of AI was defined as accuracy, F1-score and area under the curve (AUC).ResultsOf the 1140 identified studies, 17 were included. Accuracy ranged from 69 to 99%, the F1-score ranged from 0.35 to 0.94 and the AUC, ranging from 0.77 to 0.95. Based on ten studies, CNN showed a similar or improved diagnostic accuracy in addition to clinical evaluation only.ConclusionsCNNs are applicable for the detection and classification fractures on CT scans. This can improve automated and clinician-aided diagnostics. Further research should focus on the additional value of CNN used for CT scans in daily clinics.

Authors

Dankelman LHM; Schilstra S; IJpma FFA; Doornberg JN; Colaris JW; Verhofstad MHJ; Wijffels MME; Prijs J

Journal

European Journal of Trauma and Emergency Surgery, Vol. 49, No. 2, pp. 681–691

Publisher

Springer Nature

Publication Date

April 1, 2023

DOI

10.1007/s00068-022-02128-1

ISSN

1863-9933

Contact the Experts team