A comparison of bone geometry and cortical density at the mid-femur between prepuberty and young adulthood using magnetic resonance imaging
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
In upper extremity bones, a sexual dimorphism exists in the development of periosteal and endocortical bone surfaces during growth. Little is known about developmental patterns of bone geometry at weight-bearing bones like the femur. Using MRI and dual energy X-ray absorptiometry (DXA), this study assessed the differences in mid-femoral total (TA), cortical (CA) and medullary areas (MA), cortical thickness, and cortical density (BMD(compartment)) between prepuberty and young adulthood in 145 healthy subjects (94 females) 6 to 25 years old. Additionally, agreement between mid-femoral total bone volume (TV) measurements by DXA and MRI were investigated. In both sexes, TA, CA, MA, and cortical thickness were significantly larger in adults compared to prepubertal subjects (P < 0.001), and males had greater values than females. This sex difference persisted for TA, CA, and cortical thickness (P < 0.05), but not MA, after adjusting for femur length and weight. Mean (SD) cortical BMD increased from 1.05 (0.07) and 1.09 (0.10) g/cm(3) in prepubertal children to 1.46 (0.14) and 1.42 (0.1) g/cm(3) in young adults, females and males, respectively (P < 0.001). TV measurements by DXA were significantly greater than by MRI (P < 0.001) in young adults. In conclusion, periosteal and endocortical expansion and increasing cortical BMD are the growth processes found at the mid-femur in both sexes. Our findings contrast to that in upper extremity bones, where MA is constant in females during growth. The difference in femoral bone development may be due to higher strains caused by weight bearing and genetic factors. DXA, in contrast to MRI, is inaccurate in the determination of mid-femoral TV measures.