Integration of hydrogels into microfluidic devices with porous membranes as scaffolds enables their drying and reconstitution Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Hydrogels are a critical component of many microfluidic devices. They have been used in cell culture applications, biosensors, gradient generators, separation microdevices, micro-actuators, and microvalves. Various techniques have been utilized to integrate hydrogels into microfluidic devices such as flow confinement and gel photopolymerization. However, in these methods, hydrogels are typically introduced in post processing steps which add complexity, cost, and extensive fabrication steps to the integration process and can be prone to user induced variations. Here, we introduce an inexpensive method to locally integrate hydrogels into microfluidic devices during the fabrication process without the need for post-processing. In this method, porous and fibrous membranes such as electrospun membranes are used as scaffolds to hold gels and they are patterned using xurography. Hydrogels in various shapes as small as 200 μm can be patterned using this method in a scalable manner. The electrospun scaffold facilitates drying and reconstitution of these gels without loss of shape or leakage that is beneficial in a number of applications. Such reconstitution is not feasible using other hydrogel integration techniques. Therefore, this method is suitable for long time storage of hydrogels in devices which is useful in point-of-care (POC) devices. This hydrogel integration method was used to demonstrate gel electrophoretic concentration and quantification of short DNA (150 bp) with different concentrations in rehydrated agarose embedded in electrospun polycaprolactone (PCL) membrane. This can be developed further to create a POC device to quantify cell-free DNA, which is a prognostic biomarker for severe sepsis patients.

publication date

  • September 1, 2022