CYTOLOGICAL CHARACTERIZATION OF PREMEIOTIC VERSUS POSTMEIOTIC DEFECTS PRODUCING HYBRID MALE STERILITY AMONG SIBLING SPECIES OF THE DROSOPHILA MELANOGASTER COMPLEX Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • In accordance with Haldane's rule, hybridizations between species of the Drosophila simulans clade produce fertile females but sterile males. In this study, a comprehensive characterization was undertaken on the six types of F1 males that were the result of the crosses between D. simulans, D. sechellia, and D. mauritiana. With the use of light and electron microscopy, it was shown that while each particular hybrid genotype exhibited a specific sterility phenotype, these phenotypes fell into two distinct classes. The two hybrid genotypes that possessed D. mauritiana X-chromosomes contained spermatogenic defects that caused arrests in premeiotic spermatogenic stages. The other four F1 hybrids possessed postmeiotic spermatogenic defects. Nonsynchronous cell divisions, underdeveloped mitochondrial derivative-axonemal associations, and microtubule abnormalities were common to all of these hybrids. Each particular postmeiotically defective hybrid genotype demonstrated characteristically distinct profiles in sperm bundle number in addition to characteristic spermiogenic arrests in the furthest developed spermatids. These results in species hybrids contrast with the absence of significant differences in spermatogenic characters between species of this clade. In addition, by utilizing an attached-X cross, we investigated the influence of maternal effects and cytoplasmic factors on the sterility of D. simulans F1 hybrids and found none. However, we discovered a strain of D. simulans (2119) that caused a large shift in sterility from postmeiotic to premeiotic when crossed to D. sechellia. This suggests that D. simulans is polymorphic for genes involving premeiotic and postmeiotic sterility and that the two types of sterilities between species may have a simple genetic basis.

publication date

  • August 1998