Development and characterization of a binary gene expression system based on bacteriophage T7 components in adenovirus vectors
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
To explore the utility of the bacteriophage T7 binary system in adenovirus (Ad) vectors we constructed three Ad5-based vectors containing the T7 RNA polymerase (T7pol) gene in either early region 1 (E1) or E3. The recombinant Ad vectors were either deficient (AdT7pol1, AdT7pol2) or competent (AdT7pol3) for replication in human cells other than Ad5 transformed (293) cells. To test the ability of the T7 polymerase produced by these vectors to drive gene expression, a reporter vector was constructed with an E1 substitution comprising the bacterial beta-galactosidase (betaGal) (lacZ) gene under the control of the T7 gene 10 promoter (T7pro) and linked to the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) (AdBHG10T7betaGal). Coinfections were performed with the various AdT7pol vectors and the reporter vector, and expression was analysed in three different human cell lines: 293, A549 and MRC-5. Depending on the AdT7pol vector used, different levels of expression were obtained from the reporter gene. In 293 cells, expression was detected following infection at very low multiplicities of infection (moi) with all of the T7pol vectors when coinfected with the reporter vector AdBHG10T7betaGal. In A549 and MRC-5 cells very little expression was detected using AdT7pol1 or pol2 and efficient expression was only obtained when relatively high moi values of the replication-competent vector were used in the coinfections. We also constructed a single vector containing both elements of the T7 system (T7pol in E3 and T7 promoter driving expression of the chloramphenicol acetyl transferase (cat) gene in E1). This vector proved difficult to rescue but was stable once isolated. Finally, experiments performed to evaluate the 'leakiness' of the Ad-T7 system detected very little expression from the T7pro in the absence of T7 polymerase suggesting this system may be useful for the cloning and expression of genes encoding cytotoxic proteins.