Geometry of the Fluorides, Oxofluorides, Hydrides, and Methanides of Vanadium(V), Chromium(VI), and Molybdenum(VI):  Understanding the Geometry of Non-VSEPR Molecules in Terms of Core Distortion Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • This paper describes a study of the topology of the electron density and its Laplacian for the molecules VF(5), VMe(5), VH(5), CrF(6), CrMe(6), CrOF(4), MoOF(4), CrO(2)F(2,) CrO(2)F(4)(2)(-) and CrOF(5)(-) all of which, except VF(5,) CrF(6), and CrOF(5)(-) have a non-VSEPR geometry. It is shown that in each case the interaction of the ligands with the metal atom core causes it to distort to a nonspherical shape. In particular, the Laplacian of the electron density reveals the formation of local concentrations of electron density in the outer shell of the core, which have a definite geometrical arrangement such as four in a tetrahedral arrangement or five in a square pyramidal or trigonal bipyramidal and six in an octahedral arrangement. Ligands that are predominately covalently bonded are found opposite regions of charge depletion between these core charge concentrations. In VH(5), VMe(5), CrOF(4), and MoOF(4), these core charge concentrations have a square pyramidal arrangement, and the regions of charge depletions have the corresponding inverse square pyramidal arrangement so that these molecules have a square pyramidal geometry rather than a trigonal prism geometry. In CrMe(6), there are five core charge concentrations with a trigonal bipyramidal arrangement so that the regions of charge depletion have a trigonal prismatic arrangement and the molecule has the corresponding trigonal prism geometry rather than an octahedral geometry. In contrast, molecules in which the only ligand is the more ionically bound fluorine are less affected by core distortion and have VSEPR-predicted structures. The unexpected bond angles in CrO(2)F(2) and the preference of CrO(2)F(4)(2)(-) for a cis structure are also discussed in terms of the pattern of core charge concentrations.

publication date

  • January 1996