Experimental study on shear behavior of carbon-fiber-reinforced polymer reinforced concrete short beams without web reinforcement Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Recent literature emphasized the scarcity of information on the shear behavior of fiber-reinforced polymer (FRP) reinforced concrete short beams and the need to develop sufficient experimental data in this area. The present study responds to this need by conducting shear force testing on eight concrete short beams reinforced with carbon-fiber-reinforced polymer (CFRP) and four control concrete beams reinforced with steel. To ensure a shear failure, all tested beams were reinforced with only bottom longitudinal reinforcement and no web reinforcement was provided. The crack pattern, reinforcement strain, mode of failure, and shear strength and deflection of tested beams were studied. The influence of the shear span to effective depth ratio, a/d, beam effective depth, d, longitudinal reinforcement ratio, ρ, and concrete compressive strength, f con the shear behavior of CFRP-reinforced concrete short beams was examined. It was observed that the experimental parameters investigated had a significant effect on the shear strength and deflection of tested beams. It was also found that the strut-and-tie method more accurately predicts the shear strength of steel-reinforced concrete short beams than it does for similar CFRP-reinforced beams and, thus, needs to be modified to be applicable for reinforced concrete beams with FRP reinforcement.

publication date

  • January 2008