Ex Vivo Imaging of Ultrasound-Stimulated Metabolic Activity in Rat Pancreatic Slices Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Ultrasound has previously been reported to produce a reversible stimulatory effect in cultured rat beta cells. Here, we quantified and assessed dynamic metabolic changes in an in situ pancreatic slice model evoked by ultrasound application. After plating, pancreas slices were imaged using a confocal microscope at 488 and 633 nm to image lipodamine dehydrogenase (Lip-DH) autofluorescence and a far red fluorescence, respectively. Ultrasound was applied at intensities of 0.5 and 1 W/cm2 at both 800 kHz and 1 MHz. Additionally, 800 kHz at 1 W/cm2 was applied in a pulsing scheme. No ultrasound (control) and glucose application experiments were performed. A difference in fluorescence signal before and after treatment application was the metric for analysis. Comparison of experimental groups using far red fluorescence revealed significant differences between all experimental groups and control in the islet (p < 0.05) and between all ultrasound experimental groups and control (p < 0.05) in pancreatic exocrine tissue. However, this difference in response between control and glucose did not exist in the exocrine tissue. We also observed using Lip-DH autofluorescence that glucose produces a significantly increased metabolic response in islet tissue compared with exocrine tissue (p < 0.05). Pulsed ultrasound appeared to increase metabolic activity in the pancreatic slice in a more consistent manner compared with continuous ultrasound application. Our results indicate that therapeutic ultrasound may have a stimulatory metabolic effect on the pancreatic islets similar to that of glucose.

publication date

  • March 2021