Permutationally Invariant Deep Learning Approach to Molecular Fingerprinting with Application to Compound Mixtures Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Recent advancements in deep learning have led to widespread applications of its algorithms to synthetic planning and reaction predictions in the field of chemistry. One major area, known as supervised learning, is being explored for predicting certain properties such as reaction yields and types. Many chemical descriptors known as fingerprints are being explored as potential candidates for reaction properties prediction. However, there are few studies that describe the permutational invariance of chemical fingerprints, which are concatenated at some stage before being fed to deep learning architecture. In this work, we show that by utilizing permutational invariance, we consistently see improved results in terms of accuracy relative to previously published studies. Furthermore, we are able to accurately predict hydrogen peroxide loss with our own dataset, which consists of more than 20 ingredients in each chemical formulation.

publication date

  • February 22, 2021