Home
Scholarly Works
Docked ions: Vertical-aligned tubular arrays for...
Journal article

Docked ions: Vertical-aligned tubular arrays for highly efficient capacitive deionization

Abstract

Capacitive deionization (CDI) is an effective method for desalination of brackish water to alleviate the global freshwater crisis. Obtaining high desalination capacity is the primary focus of this field. Based on capacitive and pseudocapacitive behavior of the electrodes, current research is mainly devoted to increasing the specific surface area of electrode materials, however, the NaCl adsorption capacity is typically limited to the range of 10–20 mg g−1. In this work, we propose a new design paradigm of using a vertical-aligned nanotubular structure for CDI. This design allows ions to be temporarily held inside the electrodes like ships docked in a harbor (ion-docking effect, IDE) due to the greatly diminished water flow inside the tubes, thus enhancing the desalination capacity. As a result, the obtained CDI device based on vertical-aligned nanotubular P-TiO2 arrays shows an ultra-high NaCl adsorption capacity of ~60 mg g−1 within 30 min in 0.01 mol L−1 NaCl solution under 1.2 V, corresponding to a rapid average adsorption rate of 2 mg g−1 min−1. Moreover, the adsorption capacity could be further increased up to 121 and 136 mg g−1 under 1.2 and 1.5 V for 2.5 h adsorption, respectively, but still far from its equilibrium value. Finally, experiments and theoretical simulations are combined to further understand the IDE in CDI. This work highlights the discovery and the utilization of IDE in CDI, and provides new guidance for the design of CDI electrodes and can facilitate the development of CDI technology.

Authors

Luo Z-Y; Wang D; Huang L; Liu X; Zhang Q; Zhu H; Zhu S

Journal

Desalination, Vol. 540, ,

Publisher

Elsevier

Publication Date

October 15, 2022

DOI

10.1016/j.desal.2022.115985

ISSN

0011-9164

Contact the Experts team