A Multi-Time-Gated SPAD Array with Integrated Coarse TDCs Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Time-gating of single-photon avalanche diodes (SPADs) was commonly used as a method to reduce dark noise in biomedical imaging applications where photon events are correlated with a reference clock. Time-gating was also used to obtain timing information of photon events by shifting the gate windows applied to a SPAD array. However, in this approach, fine timing resolution comes at the cost of a lengthened measurement time due to the large number of counts required for each shift. As a solution, we present a multi-time-gated SPAD array that simultaneously applies shifted gate windows to an array of SPADs, which has the potential to reduce the measurement time compared to a single time gate window. Compared to similar works, this design has fully integrated the multi-gate generation using shared circuitry which also functions as a coarse time-to-digital converter. The proposed array, fabricated in the TSMC 65 nm standard CMOS process, achieved a median dark count rate (DCR) of 37 kHz, 4.37 ns gate widths, 550 ps timing resolution, and a peak photon detection probability (PDP) of 42.9% at 420 nm, all at a 0.8 V excess bias.

authors

publication date

  • July 2022