COMPREHENSIVE RADIATION DOSE MEASUREMENTS AND MONTE CARLO SIMULATION FOR THE7Li(p,n) ACCELERATOR NEUTRON FIELD Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • In order to investigate the radiation dose dependence on the incident proton energy, neutron and gamma-ray doses were measured using a tissue-equivalent proportional counter in the proton energy range of 1.95-2.50 MeV for the McMaster 7Li(p,n) neutron facility. Microdosimetric spectra were collected, and absorbed doses were determined at various positions inside the irradiation cavity, along the lateral axis and outside the shield to find out the spatial distributions of neutron and gamma-ray doses for each proton energy. In parallel with the absorbed dose measurements, MCNP Monte Carlo simulations were carried out and neutron fluence spectra were computed at various positions, which enabled determination of the neutron weighting factors. It was found that neutrons make a substantially dominant contribution to the total equivalent dose for most proton energies and positions. The effective dose for a human subject increased from 0.058 to 1.306 μSv μA-1 min-1 with the increase of proton energy from 1.95 to 2.5 MeV. It is expected that the reported data will be useful for 7Li(p,n) accelerator neutron users.

publication date

  • December 2016