Pharmaceutical Micropollutant Treatment with UV–LED/TiO2 Photocatalysis under Various Lighting and Matrix Conditions Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The persistence of pharmaceuticals and personal care products (PPCPs) in water has been a cause for concern for several years. Many studies have successfully used TiO2/UV photocatalysis to remove these compounds from water. In order to optimize these systems for large-scale water treatment, the effects of the reaction matrix, methods to improve energy efficiency, and methods for easy catalyst separation must be considered. The following study examines the photocatalytic degradation of a cocktail of 18 PPCPs using a porous titanium–titanium dioxide membrane and the effect of solution pH on kinetic rate constants. The addition of methanol to the reaction—commonly used as a carrier solvent—had a significant effect on kinetic rate constants even at low concentrations. Solution pH was also found to influence kinetic rate constants. Compounds had higher kinetic rate constants when they were oppositely charged to the membrane at experimental pH as opposed to similarly charged, suggesting that electrostatic forces have a significant effect. The controlled periodic illumination of UV–LEDs was also investigated to increase photonic efficiency. The dual-frequency light cycle used did not cause a decrease in degradation for many compounds, successfully increasing the photonic efficiency without sacrificing performance.

authors

  • Snowdon, Monika
  • Liang, Robert
  • Van Leeuwen, Jocelyn C
  • Schneider, Olivia
  • Khan, Abrar
  • Li Chun Fong, Lena CM
  • Zhou, Norman
  • Servos, Mark R