Home
Scholarly Works
Role of M-CSF-dependent macrophages in colitis is...
Journal article

Role of M-CSF-dependent macrophages in colitis is driven by the nature of the inflammatory stimulus

Abstract

Although macrophages are considered a critical factor in determining the severity of acute inflammatory responses in the gut, recent evidence has indicated that macrophages may also play a counterinflammatory role. In this study, we examined the role of a macrophage subset in two models of colitis. Macrophage colony-stimulating factor (M-CSF)-deficient osteopetrotic mice (op/op) and M-CSF-expressing heterozygote (+/?) mice were studied following the induction of colitis by either dinitrobenzene sulfonic acid (DNBS) or dextran sulfate sodium (DSS). DNBS induced a severe colitis in M-CSF-deficient op/op mice compared with +/? mice. This was associated with increased mortality and more severe macroscopic and microscopic injury. Colonic tissue myeloperoxidase (MPO) activity as well as concentrations of TNF-alpha, IL-1beta, and IL-6 were higher and IL-10 lower in op/op mice with DNBS colitis. The severity of inflammation and mortality was attenuated in op/op mice that had received human recombinant M-CSF prior to the induction of colitis. In contrast, op/op mice appeared less vulnerable to colitis induced by DSS. Macroscopic damage, microscopic injury, MPO activity, and tissue concentrations of TNF-alpha, IL-1beta, and IL-6 were all lower in op/op mice compared with +/? mice with DSS colitis, and no changes were seen in IL-10. Macrophage inflammatory protein-1alpha concentrations were increased in op/op but not +/? mice following colitis induced by DNBS but not DSS. These results indicate that M-CSF-dependent macrophages may play either a pro- or counterinflammatory role in acute experimental colitis, depending on the stimulus used to induce colitis.

Authors

Ghia J-E; Galeazzi F; Ford DC; Hogaboam CM; Vallance BA; Collins S

Journal

AJP Gastrointestinal and Liver Physiology, Vol. 294, No. 3, pp. g770–g777

Publisher

American Physiological Society

Publication Date

March 1, 2008

DOI

10.1152/ajpgi.00453.2007

ISSN

0193-1857

Contact the Experts team