GROWTH OF MAGNETIC FIELDS INDUCED BY TURBULENT MOTIONS
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
We present numerical simulations of driven magnetohydrodynamic (MHD)
turbulence with weak/moderate imposed magnetic fields. The main goal is to
clarify dynamics of magnetic field growth. We also investigate the effects of
the imposed magnetic fields on the MHD turbulence, including, as a limit, the
case of zero external field. Our findings are as follows. First, when we start
off simulations with weak mean magnetic field only (or with small scale random
field with zero imposed field), we observe that there is a stage at which
magnetic energy density grows linearly with time. Runs with different numerical
resolutions and/or different simulation parameters show consistent results for
the growth rate at the linear stage. Second, we find that, when the strength of
the external field increases, the equilibrium kinetic energy density drops by
roughly the product of the rms velocity and the strength of the external field.
The equilibrium magnetic energy density rises by roughly the same amount.
Third, when the external magnetic field is not very strong (say, less than ~0.2
times the rms velocity when measured in the units of Alfven speed), the
turbulence at large scales remains statistically isotropic, i.e. there is no
apparent global anisotropy of order B_0/v. We discuss implications of our
results on astrophysical fluids.