Dark MaGICC: the effect of dark energy on disc galaxy formation. Cosmology does matter
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
We present the Dark MaGICC project, which aims to investigate the effect of
Dark Energy (DE) modeling on galaxy formation via hydrodynamical cosmological
simulations. Dark MaGICC includes four dynamical Dark Energy scenarios with
time varying equations of state, one with a self-interacting Ratra-Peebles
model. In each scenario we simulate three galaxies with high resolution using
smoothed particle hydrodynamics (SPH). The baryonic physics model is the same
used in the Making Galaxies in a Cosmological Context (MaGICC) project, and we
varied only the background cosmology. We find that the Dark Energy
parameterization has a surprisingly important impact on galaxy evolution and on
structural properties of galaxies at z=0, in striking contrast with predictions
from pure Nbody simulations. The different background evolutions can (depending
on the behavior of the DE equation of state) either enhance or quench star
formation with respect to a LCDM model, at a level similar to the variation of
the stellar feedback parameterization, with strong effects on the final galaxy
rotation curves. While overall stellar feedback is still the driving force in
shaping galaxies, we show that the effect of the Dark Energy parameterization
plays a larger role than previously thought, especially at lower redshifts. For
this reason, the influence of Dark Energy parametrization on galaxy formation
must be taken into account, especially in the era of precision cosmology.