Hierarchical formation of bulgeless galaxies - II. Redistribution of angular momentum via galactic fountains
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Within a fully cosmological hydrodynamical simulation, we form a galaxy which
rotates at 140 km/s, and is characterised by two loose spiral arms and a bar,
indicative of a Hubble Type SBc/d galaxy. We show that our simulated galaxy has
no classical bulge, with a pure disc profile at z=1, well after the major
merging activity has ended. A long-lived bar subsequently forms, resulting in
the formation of a secularly-formed "pseudo" bulge, with the final
bulge-to-total light ratio B/T=0.21. We show that the majority of gas which
loses angular momentum and falls to the central region of the galaxy during the
merging epoch is blown back into the hot halo, with much of it returning later
to form stars in the disc. We propose that this mechanism of redistribution of
angular momentum via a galactic fountain, when coupled with the results from
our previous study which showed why gas outflows are biased to have low angular
momentum, can solve the angular momentum/bulgeless disc problem of the cold
dark matter paradigm.