abstract
- We present the first high-resolution N-Body/SPH simulations that follow the evolution of low surface brightness disk satellites in a primary halo containing both dark matter and a hot gas component. Tidal shocks turn the stellar disk into a spheroid with low $v/\sigma$ and remove most of the outer dark and baryonic mass. In addition, by weakening the potential well of the dwarf, tides enhance the effect of ram pressure, and the gas is stripped down to radius three times smaller than the stellar component A very low gas/stars ratio results after several Gyr, similarly to what seen in dwarf spheroidal satellites of the Milky Way and M31.