Site-dilution in the quasi-one-dimensional antiferromagnetSr2(Cu1−xPdx)O3: Reduction of Néel temperature and spatial distribution of ordered moment sizes
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
We investigate the Neel temperature of Sr2CuO3 as a function of the site
dilution at the Cu (S=1/2) sites with Pd (S=0), utilizing the muon spin
relaxation (muSR) technique. The Neel temperature, which is Tn=5.4K for the
undoped system, becomes significantly reduced for less than one percent of
doping Pd, giving a support for the previous proposal for the good
one-dimensionality. The Pd concentration dependence of the Neel temperature is
compared with a recent theoretical study (S. Eggert, I. Affleck and M.D.P.
Horton, Phys. Rev. Lett. 89, 47202 (2002)) of weakly coupled one-dimensional
antiferromagnetic chains of S=1/2 spins, and a quantitative agreement is found.
The inhomogeneity of the ordered moment sizes is characterized by the muSR time
spectra. We propose a model that the ordered moment size recovers away from the
dopant S=0 sites with a recovery length of \xi = 150-200 sites. The origin of
the finite recovery length \xi for the gapless S=1/2 antiferromagnetic chain is
compared to the estimate based on the effective staggered magnetic field from
the neighboring chains.