Fragmentation and collapse of turbulent molecular clouds Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We performed simulations of self-gravitating hydrodynamic turbulence to model the formation of filaments, clumps and cores in molecular clouds. We find that when the mass on the initial computational grid is comparable to the Jeans mass, turbulent pressure is able to prevent gravitational collapse. When the turbulence has damped away sufficiently, gravitational collapse can occur, and the resulting structure closely resembles the pre-singularity collapse of an isothermal sphere of Penston (1969). If several Jeans masses are initially placed on the grid, turbulence may not be sufficient to prevent collapse before turbulence can be significantly damped. In this case, the cores have density structures which are considerably shallower than expected for an isothermal gas, and resemble the solutions for a logatropic equation of state.

publication date

  • January 1, 2003