Home
Scholarly Works
Astala’s conjecture on distortion of Hausdorff...
Journal article

Astala’s conjecture on distortion of Hausdorff measures under quasiconformal maps in the plane

Abstract

Let $$ E \subset \mathbb{C} $$ be a compact set, $$ g:\mathbb{C} \to \mathbb{C} $$ be a K-quasiconformal map, and let 0 < t < 2. Let $$ {\mathcal{H}^t} $$ denote t-dimensional Hausdorff measure. Then $$ {\mathcal{H}^t}(E) = 0\quad \Rightarrow \quad {\mathcal{H}^{t'}}\left( {gE} \right) = 0,\quad t' = \frac{{2Kt}}{{2 + \left( {K - 1} \right)t}}. $$This is a refinement of a set of inequalities on the distortion of Hausdorff dimensions by quasiconformal maps proved by K. Astala in [2] and answers in the positive a conjecture of K. Astala in op. cit.

Authors

Lacey MT; Sawyer ET; Uriarte-Tuero I

Journal

Acta Mathematica, Vol. 204, No. 2, pp. 273–292

Publisher

International Press of Boston

Publication Date

June 1, 2010

DOI

10.1007/s11511-010-0048-5

ISSN

0001-5962

Labels

Contact the Experts team