Temperature dependence of the conductivity sum rule in the normal state due to inelastic scattering Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We examine the temperature dependence of the optical sum rule in the normal state due to interactions. To be concrete we adopt a weak coupling approach which uses an electron-boson exchange model to describe inelastic scattering of the electrons with a boson, in the Migdal approximation. While a number of recent works attribute the temperature dependence in the normal state to that which arises in a Sommerfeld expansion, we show that in a wide parameter regime this contribution can be quite small. Instead, most of the temperature dependence arises from the zeroth order term in the `expansion', through the temperature dependence of the spectral function, and the interaction parameters contained therein. For low boson frequencies this circumstance causes a linear T-dependence in the sum rule. We develop some analytical expressions and understanding of the temperature dependence.

publication date

  • October 1, 2006