picd-1, a gene that encodes CABIN1 domain-containing protein, interacts with pry-1/Axin to regulate multiple processes in Caenorhabditis elegans Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • ABSTRACTAXIN family members control diverse biological processes in eukaryotes. As a scaffolding protein, AXIN facilitates interactions between cellular components and provides specificity to signaling pathways. Despite its crucial roles in metazoans and discovery of a large number of family members, the mechanism of AXIN function is not very well understood. The C. elegans AXIN homolog PRY-1 provides a powerful tool to identify interacting genes and downstream effectors that function in a conserved manner to regulate AXIN-mediated signaling. Previous work demonstrated pry-1’s essential role in developmental processes such as reproductive system, seam cells, and a P lineage cell P11.p. More recently, our lab carried out a transcriptome profiling of pry-1 mutant and uncovered the essential role of the gene in lipid metabolism, stress response, and aging. In this study, we have extended the work on pry-1 by reporting a novel interacting gene picd-1 (pry-1-interacting CABIN1 domain containing). Our findings have revealed that picd-1 plays an essential role in C. elegans and is involved in several pry-1-mediated processes including regulation of stress response and lifespan maintenance. In support of this, picd-1 expression overlaps with pry-1 in multiple tissues throughout the lifespan of animals. Further experiments showed that picd-1 inhibits CREB-regulated transcriptional coactivator homolog CRTC-1 function, which promotes longevity in a calcineurin-dependent manner. These data provide evidence for an essential role of the CABIN1 domain protein PICD-1 in mediating PRY-1 signaling in C. elegans.

publication date

  • September 28, 2021