Antiviral Activity of Contemporary Contact Lens Care Solutions against Two Human Seasonal Coronavirus Strains Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Background: Given that reports have suggested SARS-CoV-2 can be transmitted via conjunctiva, the ability of contact lens (CL) care products to reduce the infectiousness of two seasonal human coronavirus (HCoV) (HCoV-229E and HCoV-OC43) surrogates for SARS-CoV-2 was investigated. Methods: Biotrue and Boston Simplus (Bausch&Lomb), OPTI-FREE Puremoist and Clear Care (Alcon), and cleadew and cleadew GP (Ophtecs) were tested. Their ability to inactivate HCoV was evaluated using contact times of 4 and 6 h as well as 1% and 10% of virus inoculum. Results: Non-oxidative systems (Biotrue, Boston Simplus, and OPTI-FREE) did not exhibit a significant log10 reduction compared to controls for the two viral strains for either incubation time (all p > 0.05) when 10% tests were performed. For the 1% test, while Boston Simplus and OPTI-FREE exhibited a significant log10 reduction of both HCoV-229E (after 6 h) and HCoV-OC43 (after either 4 or 6 h incubation), those products showed less than 1 log10 reduction of the two infectious viruses. Oxidative systems based on hydrogen peroxide or povidone-iodine showed a significant log10 reduction compared with the controls for both HCoV-229E and HCoV-OC43 in all tested conditions (all p < 0.01). Clear Care led to virus inactivation to below the limit of quantification for tests performed with 1% of inoculum after 6 h incubation, while cleadew and cleadew GP led to inactivation of the two viruses to below the limit of quantification in all tested conditions. Conclusion: Oxidative CL disinfection systems showed significant virucidal activity against HCoV-229E and HCoV-OC43, while non-oxidative systems showed minimal ability to inactivate the HCoV species examined.

authors

  • Lourenco Nogueira, Christiane
  • Boegel, Scott Joseph
  • Shukla, Manish
  • Ngo, William
  • Jones, Lyndon
  • Aucoin, Marc G

publication date

  • April 15, 2022