Home
Scholarly Works
Damage Accumulation Phenomena in Multilayer...
Journal article

Damage Accumulation Phenomena in Multilayer (TiAlCrSiY)N/(TiAlCr)N, Monolayer (TiAlCrSiY)N Coatings and Silicon upon Deformation by Cyclic Nanoindentation

Abstract

The micromechanism of the low-cycle fatigue of mono- and multilayer PVD coatings on cutting tools was investigated. Multilayer nanolaminate (TiAlCrSiY)N/(TiAlCr)N and monolayer (TiAlCrSiY)N PVD coatings were deposited on the cemented carbide ball nose end mills. Low-cycle fatigue resistance was studied using the cyclic nanoindentation technique. The obtained results were compared with the behaviour of the polycrystalline silicon reference sample. The fractal analysis of time-resolved curves for indenter penetration depth demonstrated regularities of damage accumulation in the coatings at the early stage of wear. The difference in low-cycle fatigue of the brittle silicon and nitride wear-resistant coatings is shown. It is demonstrated that when distinguished from the single layer (TiAlCrSiY)N coating, the nucleation and growth of microcracks in the multilayer (TiAlCrSiY)N/(TiAlCr)N coating is accompanied by acts of microplastic deformation providing a higher fracture toughness of the multilayer nanolaminate (TiAlCrSiY)N/(TiAlCr)N.

Authors

Kovalev AI; Vakhrushev VO; Beake BD; Konovalov EP; Wainstein DL; Dmitrievskii SA; Fox-Rabinovich GS; Veldhuis S

Journal

Nanomaterials, Vol. 12, No. 8,

Publisher

MDPI

Publication Date

April 1, 2022

DOI

10.3390/nano12081312

ISSN

2079-4991

Contact the Experts team