Home
Scholarly Works
Molecular distributions and compound-specific...
Journal article

Molecular distributions and compound-specific stable carbon isotopic compositions of lipids in wintertime aerosols from Beijing

Abstract

Molecular distributions and stable carbon isotopic compositions (δ13C) of n-alkanes, fatty acids and n-alcohols were investigated in urban aerosols from Beijing, northern China to better understand the sources and long-range atmospheric transport of terrestrial organic matter during polluted and clear days in winter. n-Alkanes (C19–C36), fatty acids (C8–C32) and n-alcohols (C16–C32) detected in Beijing aerosols are characterized by the predominance of C23, C16 and C28, respectively. Carbon preference index (CPI) values of n-alkanes, the ratios of the sum of odd-numbered n-alkanes to the sum of even-numbered n-alkanes, are close to 1, indicating a heavy influence of fossil fuel combustion. Relatively higher ratios of C(18:0+16:0)/C(18:n+16:1) (fatty acids) on clear days than polluted days indicate that long-distance transport and/or photochemical aging are more significant during clear days. δ13C values of n-alkanes and low molecular weight fatty acids (C16:0, C18:0) ranged from –34.1 to −24.7% and −26.9 to −24.6%, respectively, which are generally heavier on polluted days than those on clear days. Such a wide range suggests that atmospheric lipids in Beijing aerosols originate from multiple sources and encounter complicated atmospheric processes during long-range transport in North China.

Authors

Ren L; Fu P; He Y; Hou J; Chen J; Pavuluri CM; Sun Y; Wang Z

Journal

Scientific Reports, Vol. 6, No. 1,

Publisher

Springer Nature

Publication Date

June 8, 2016

DOI

10.1038/srep27481

ISSN

2045-2322

Labels

Contact the Experts team