Design space optimization using a numerical design continuation method Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • AbstractA generalized optimization problem in which design space is also a design to be found is defined and a numerical implementation method is proposed. In conventional optimization, only a portion of structural parameters is designated as design variables while the remaining set of other parameters related to the design space are often taken for granted. A design space is specified by the number of design variables, and the layout or configuration. To solve this type of design space problems, a simple initial design space is selected and gradually improved while the usual design variables are being optimized. To make the design space evolve into a better one, one may increase the number of design variables, but, in this transition, there are discontinuities in the objective and constraint functions. Accordingly, the sensitivity analysis methods based on continuity will not apply to this discontinuous stage. To overcome the difficulties, a numerical continuation scheme is proposed based on a new concept of a pivot phase design space. Two new categories of structural optimization problems are formulated and concrete examples shown. Copyright © 2001 John Wiley & Sons, Ltd.

publication date

  • March 20, 2002