Home
Scholarly Works
Influence through mixing: hotspots as benchmarks...
Journal article

Influence through mixing: hotspots as benchmarks for basic black-hole behaviour

Abstract

Effective theories are being developed for fields outside black holes, often with an unusual open-system feel due to the influence of large number of degrees of freedom that lie out of reach beyond the horizon. What is often difficult when interpreting such theories is the absence of comparisons to simpler systems that share these features. We propose here such a simple model, involving a single external scalar field that mixes in a limited region of space with a ‘hotspot’ containing a large number of hot internal degrees of freedom. Since the model is at heart gaussian it can be solved explicitly, and we do so for the mode functions and correlation functions for the external field once the hotspot fields are traced out. We compare with calculations that work perturbatively in the mixing parameter, and by doing so can precisely identify its domain of validity. We also show how renormalization-group EFT methods can allow some perturbative contributions to be resummed beyond leading order, verifying the result using the exact expression.

Authors

Kaplanek G; Burgess CP; Holman R

Journal

Journal of High Energy Physics, Vol. 2021, No. 9,

Publisher

Springer Nature

Publication Date

September 1, 2021

DOI

10.1007/jhep09(2021)006

ISSN

1126-6708

Contact the Experts team