Organoids as a model system for studying human lung development and disease Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The lung is a complex organ comprising multiple cell types that perform a variety of vital processes, including immune defense and gas exchange. Diseases of the lung, such as chronic obstructive pulmonary disease, asthma and lung cancer, together represent one of the largest causes of patient suffering and mortality. Logistical barriers that hamper access to embryonic, normal adult or diseased lung tissue currently hinder the study of lung disease. In vitro lung modeling represents an attractive and accessible avenue for investigating lung development, function and disease pathology, but accurately modeling the lung in vitro requires a system that recapitulates the structural features of the native lung. Organoids are stem cell-derived three-dimensional structures that are supported by an extracellular matrix and contain multiple cell types whose spatial arrangement and interactions mimic those of the native organ. Recently, organoids representative of the respiratory system have been generated from adult lung stem cells and human pluripotent stem cells. Ongoing studies are showing that organoids may be used to model human lung development, and can serve as a platform for interrogating the function of lung-related genes and signalling pathways. In a therapeutic context, organoids may be used for modeling lung diseases, and as a platform for screening for drugs that alleviate respiratory disease. Here, we summarize the organoid-forming capacity of respiratory cells, current lung organoid technologies and their potential use in future therapeutic applications.

publication date

  • May 2016