Polymerization from the Surface of Single-Walled Carbon Nanotubes − Preparation and Characterization of Nanocomposites
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Single-walled carbon nanotubes were functionalized along their sidewalls with phenol groups using the 1,3-dipolar cycloaddition reaction. These phenols could be further derivatized with 2-bromoisobutyryl bromide, resulting in the attachment of atom transfer radical polymerization initiators to the sidewalls of the nanotubes. These initiators were found to be active in the polymerization of methyl methacrylate and tert-butyl acrylate from the surface of the nanotubes. However, the polymerizations were not controlled, leading to the production of high molecular weight polymers with relatively large polydispersities. The resulting polymerized nanotubes were analyzed by IR, Raman spectroscopy, DSC, TEM, and AFM. The nanotubes functionalized with poly(methyl methacrylate) were found to be insoluble, while those functionalized with poly(tert-butyl acrylate) were soluble in a variety of organic solvents. The tert-butyl groups of these appended polymers could also be removed to produce nanotubes functionalized with poly(acrylic acid), resulting in structures that are soluble in aqueous solutions.