Unique microbial-derived volatile organic compounds in portal venous circulation in murine non-alcoholic fatty liver disease Journal Articles uri icon

  • Overview
  • Research
  • Identity
  • Additional Document Info
  • View All


  • BACKGROUND AND AIMS: Non-alcoholic fatty liver disease is now the leading liver disease in North America. The progression of non-alcoholic fatty liver disease to the inflammatory condition, non-alcoholic steatohepatitis is complex and currently not well understood. Intestinal microbial dysbiosis has been implicated in the development of non-alcoholic fatty liver disease and progression of non-alcoholic steatohepatitis. Volatile organic compounds are byproducts of microbial metabolism in the gut that may enter portal circulation and have hepatotoxic effects contributing to the pathogenesis of non-alcoholic steatohepatitis. To test this hypothesis, we measured volatile organic compounds in cecal luminal contents and portal venous blood in a mouse model of non-alcoholic steatohepatitis. METHODS: Gas chromatography-mass spectrometry analysis was conducted on cecal content and portal vein blood for volatile organic compound detection from mice fed a methionine and choline deficient diet, which induces non-alcoholic steatohepatitis. The colonic microbiome was studied by 16S rRNA gene amplification using the Illumina MiSeq platform. RESULTS: Sixty-eight volatile organic compounds were detected in cecal luminal content, a subset of which was also present in portal venous blood. Importantly, differences in portal venous volatile organic compounds were associated with diet-induced steatohepatitis establishing a biochemical link between gut microbiota-derived volatile organic compounds and increased susceptibility to non-alcoholic steatohepatitis. CONCLUSION: Our model creates a novel tool to further study the role of gut-derived volatile organic compounds in the pathogenesis of non-alcoholic steatohepatitis.


  • Reid, DT
  • McDonald, B
  • Khalid, T
  • Vo, T
  • Schenck, LP
  • Surette, Michael
  • Beck, PL
  • Reimer, RA
  • Probert, CS
  • Rioux, KP
  • Eksteen, B

publication date

  • July 2016