abstract
- The liquid-liquid phase separation of a polyelectrolyte solution containing one type of negatively and two types of positively charged polymers with different charge densities is studied theoretically by random phase approximation (RPA). It is predicted that multicoacervate phases could coexist, driven purely by electrostatic correlations. The asymmetry of the linear charge density could induce an effective immiscibility between two positively charged polyelectrolytes, leading to the multiphase separation. Adding salt will induce the disappearance of the dilute phase, forming two coexisting complex phases, instead of fusion between coacervates. Raising temperature could either induce a two coexisting complex phase, or a dilute phase coexisting with a coacervate phase, depending on the bulk concentration. Our predictions are in good agreement with experiments and provide insights in the further designing of the multiphase coacervation system.