Economic Considerations of Early Rule-In/Rule-Out Algorithms for The Diagnosis of Myocardial Infarction in The Emergency Department Using Cardiac Troponin and Glycemic Biomarkers Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • BACKGROUND: We have previously demonstrated the utility of a rule-in/rule-out strategy for myocardial infarction (MI) using glycemic biomarkers in combination with cardiac troponin in the emergency department (ED). Given that the cost of assessing patients with possible MI in the ED is increasing, we sought to compare the health services cost of our previously identified early rule-in/rule-out approaches for MI among patients who present to the ED with symptoms suggestive of acute coronary syndrome (ACS). METHODS: We compared the cost differences between different rule-in/rule-out strategies for MI using presentation cardiac troponin I (cTnI), high-sensitivity cTnI (hs-cTnI), high-sensitivity cardiac troponin T (hs-cTnT), glucose, and/or hemoglobin A1c (Hb A1c) in 1137 ED patients (7-day MI n = 133) as per our previously defined algorithms and compared them with the European Society of Cardiology (ESC) 0-h algorithm-cutoffs. Costs associated with each decision model were obtained from site-specific sources (length of stay) and provincial sources (Ontario Case Costing Initiative). RESULTS: Algorithms incorporating cardiac troponin and glucose for early rule-in/rule-out were the most cost effective and clinically safest methods (i.e., ≤1 MI missed) for early decision making, with hs-cTnI and glucose yielding lower costs compared to cTnI and glucose, despite the higher price for the hs-cTnI test. The addition of Hb A1c to the algorithms increased the cost of these algorithms but did not miss any additional patients with MI. Applying the ESC 0-h algorithm-cutoffs for hs-cTnI and hs-cTnT were the most costly. CONCLUSIONS: Rule-in/rule-out algorithms incorporating presentation glucose with high-sensitivity cardiac troponin are the safest and most cost-effective options as compared to the ESC 0-h algorithm-cutoffs.

publication date

  • February 2017