Home
Scholarly Works
Restricted Testing for Positive Operators
Journal article

Restricted Testing for Positive Operators

Abstract

We prove that for certain positive operators T, such as the Hardy–Littlewood maximal function and fractional integrals, there is a constant D>1$$D>1$$, depending only on the dimension n, such that the two weight norm inequality ∫RnTfσ2dω≤C∫Rnf2dσ$$\begin{aligned} \int _{{\mathbb {R}}^{n}}T\left( f\sigma \right) ^{2}\mathrm{{d}}\omega \le C\int _{{\mathbb {R}}^{n}}f^{2}\mathrm{{d}}\sigma \end{aligned}$$holds for all f≥0$$f\ge 0$$if and only if the (fractional) A2$$A_{2}$$ condition holds, and the restricted testing condition ∫QT1Qσ2dω≤CQσ$$\begin{aligned} \int _{Q}T\left( 1_{Q}\sigma \right) ^{2}\mathrm{{d}}\omega \le C\left| Q\right| _{\sigma } \end{aligned}$$holds for all cubes Q satisfying 2Qσ≤DQσ$$\left| 2Q\right| _{\sigma }\le D\left| Q\right| _{\sigma }$$. If T is linear, we require as well that the dual restricted testing condition ∫QT∗1Qω2dσ≤CQω$$\begin{aligned} \int _{Q}T^{*}\left( 1_{Q}\omega \right) ^{2}\mathrm{{d}}\sigma \le C\left| Q\right| _{\omega } \end{aligned}$$holds for all cubes Q satisfying 2Qω≤DQω$$\left| 2Q\right| _{\omega }\le D\left| Q\right| _{\omega }$$.

Authors

Hytönen T; Li K; Sawyer E

Journal

The Journal of Geometric Analysis, Vol. 31, No. 11, pp. 11139–11164

Publisher

Springer Nature

Publication Date

November 1, 2021

DOI

10.1007/s12220-021-00675-4

ISSN

1050-6926

Contact the Experts team