Investigating Parietal and Premotor Influence on Motor Cortical Excitability Associated with Visuomotor Associative Plasticity Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The brain changes in response to sensory signals it is exposed to. It has been shown that long term potentiation-like neuroplasticity can be experimentally induced via visual paired-associative stimulation (V-PAS). V-PAS combines afferent visual stimuli with a transcranial magnetic stimulation pulse to induce plasticity. Preparation of a reaching movement to generate activity in superior parietal occipital cortex (SPOC) was used in this study as an additional afferent contributor to modulate the resultant plasticity. We hypothesized that V-PAS with a reaching movement would induce greater cortical excitability than V-PAS alone and would exhibit facilitated SPOC to M1 projections. All four experiments enrolled groups of 10 participants to complete variations of V-PAS in a repeated measures design. SPOC to M1 projections facilitated motor cortex excitability following V-PAS regardless of intervention received. We did not observe evidence indicating extra afferent information provided an additive effect to participants. Investigation of PMd to M1 projections confirmed disinhibition and suggested interneuronal populations within M1 may be mechanistically involved. Future research should look to rule out the existence of an upper limit for effective afference during V-PAS and investigate the average influence of V-PAS on cortical excitability in the larger population.

publication date

  • April 2, 2021