abstract
- We consider the scenario where dark matter (DM) is represented by an ultralight classical scalar field performing coherent periodic oscillations. We point out that such DM perturbs the dynamics of binary systems either through its gravitational field or via direct coupling to ordinary matter. This perturbation gets resonantly amplified if the frequency of DM oscillations is close to a (half-)integer multiple of the orbital frequency of the system and leads to a secular variation of the orbital period. We suggest using binary pulsars as probes of this scenario and estimate their sensitivity. While the current accuracy of observations is not yet sufficient to probe the purely gravitational effect of DM, it already yields constraints on direct coupling that are competitive with other bounds. The sensitivity will increase with the upcoming radio observatories such as the Square Kilometer Array.