Effectuation of loading a natural acetyl carnosine derivative within a promising cross-linked cyclodextrin spongey-like nanospheres on Physicochemical characterization and release behavior. Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • This study centered on the ability of the cross-linked nano-sponge system to load the drug and to improve its physicochemical and dissolution properties. A spectrophotometric method was used to determine the wavelength of maximum absorbance of the drug. The ultrasonic-assisted synthesis method was used for nano-sponge preparation. Solution-state interactions, encapsulation efficiency and production yield, and in-vitro release were also investigated. Nano-sponges were characterized by Transmission Electron-Microscopy (TEM), Scanning Electron-Microscopy (SEM), Fourier Transform-Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), and X-Ray Diffractometry (X-RD) studies. The maximum absorption wavelength of N-acetyl-L-carnosine was found to be at 210 nm. Solution-state interaction studies revealed a bathochromic shift. The production yield of nano-sponges ranged from 59.58% to 72.54%. In-vitro release study showed a sustained drug release for 228 hours. TEM images showed regular spherical shapes and sizes of nano-sponges. Their average particle size ranged from 28 nm to 79.2 nm. DSC data documented the drug-polymer interactions. FT-IR determined the presence of functional groups. X-RD showed the physicochemical characteristics of nano-sponges. Proving successful development of N-acetyl-L-carnosine polymeric nano-sponge system with a suitable drug delivery over an extended period beside a noticeable improvement in the physicochemical characterization.

authors

publication date

  • January 1, 2021