Filamentous Phages as Building Blocks for Bioactive Hydrogels Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Filamentous bacteriophages (bacterial viruses) are semiflexible proteinous nanofilaments with high aspect ratios for which the surface chemistry can be controlled with atomic precision via genetic engineering. That, in addition to their ability to self-propagate and replicate a nearly monodisperse batch of biologically and chemically identical nanofilaments, makes these bionanofilaments superior to most synthetic nanoparticles and thus a powerful tool in the bioengineers' toolbox. Furthermore, filamentous phages form liquid crystalline structures at high concentrations; these ordered assemblies create hierarchically ordered macro-, micro-, and nanostructures that, once cross-linked, can form hierarchically ordered hydrogels, hydrated soft material with a variety of physical and chemical properties suitable for biomedical applications (e.g., wound dressings and tissue engineering scaffolds) as well as biosensing, diagnostic assays. We provide a critical review of these hydrogels of filamentous phage, and their physical, mechanical, chemical, and biological properties and current applications, as well as an overview of limitations and challenges and outlook for future applications. In addition, we present a list of design parameters for filamentous phage hydrogels to serve as a guide for the (bio)engineer and (bio)chemist interested in utilizing these powerful bionanofilaments for designing smart, bioactive materials and devices.

publication date

  • March 15, 2021