Home
Scholarly Works
New classes of examples satisfying the three...
Journal article

New classes of examples satisfying the three matrix analog of Gerstenhaber's theorem

Abstract

In 1961, Gerstenhaber proved the following theorem: if k is a field and X and Y are commuting d × d matrices with entries in k, then the unital k-algebra generated by these matrices has dimension at most d. The analog of this statement for four or more commuting matrices is false. The three matrix version remains open. We use commutative–algebraic techniques to prove that the three matrix analog of Gerstenhaber's theorem is true for some new classes of examples. In particular, we translate this three commuting matrix statement into an equivalent statement about certain maps between modules, and prove that this commutative–algebraic reformulation is true in special cases. We end with ideas for an inductive approach intended to handle the three matrix analog of Gerstenhaber's theorem more generally.

Authors

Rajchgot J; Satriano M

Journal

Journal of Algebra, Vol. 516, , pp. 245–270

Publisher

Elsevier

Publication Date

December 15, 2018

DOI

10.1016/j.jalgebra.2018.09.020

ISSN

0021-8693

Contact the Experts team