Tumor Heterogeneity: A Great Barrier in the Age of Cancer Immunotherapy Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Throughout the history of oncology research, tumor heterogeneity has been a major hurdle for the successful treatment of cancer. As a result of aberrant changes in the tumor microenvironment such as high mutational burden, hypoxic conditions and abnormal vasculature, several malignant subpopulations often exist within a single tumor mass. Therapeutic intervention can also increase selective pressure towards subpopulations with acquired resistance. This phenomenon is often the cause of relapse in previously responsive patients, drastically changing the expected outcome of therapy. In the case of cancer immunotherapy, tumor heterogeneity is a substantial barrier as acquired resistance often takes the form of antigen escape and immunosuppression. In an effort to combat intrinsic resistance mechanisms, therapies are often combined as a multi-pronged approach to target multiple pathways simultaneously. These multi-therapy regimens have long been a mainstay of clinical oncology with chemotherapy cocktails but are more recently being investigated in the emerging landscape of immunotherapy. Furthermore, as high throughput technology becomes more affordable and accessible, researchers continue to deepen their understanding of the factors that influence tumor heterogeneity and shape the TME over the course of treatment regimens. In this review, we will investigate the factors that give rise to tumor heterogeneity and the impact it has on the field of immunotherapy. We will discuss how tumor heterogeneity causes resistance to various treatments and review the strategies currently being employed to overcome this challenging clinical hurdle. Finally, we will outline areas of research that should be prioritized to gain a better understanding of tumor heterogeneity and develop appropriate solutions.

publication date

  • February 15, 2021