Home
Scholarly Works
In-situ effect in cross-ply laminates under...
Journal article

In-situ effect in cross-ply laminates under various loading conditions analyzed with hybrid macro/micro-scale computational models

Abstract

In this work, multi-scale finite element analyses based on three-dimensional (3D) hybrid macro/micro-scale computational models subjected to various loading conditions are carried out to examine the in-situ effect imposed by the neighboring plies on the failure initiation and propagation of cross-ply laminates. A detailed comparative study on crack suppression mechanisms due to the effect of embedded laminar thickness and adjacent ply orientation is presented. Furthermore, we compare the results of in-situ transverse failure strain and strength between the computational models and analytical predictions. Good agreements are generally observed, indicating the constructed computational models are highly accurate to quantify the in-situ effect. Subsequently, empirical formulas for calculating the in-situ strengths as a function of embedded ply thickness and different ply angle between embedded and adjacent plies are developed, during which several material parameters are obtained using a reverse fitting method. Finally, a new set of failure criteria for σ 22-τ 12, σ 22-τ 23, and σ 11-τ 12 accounting for the in-situ strengths are proposed to predict laminated composites failure under multi-axial stress states. This study demonstrates an effective and efficient computational technique towards the accurate prediction of the failure behaviors and strengths of cross-ply laminates by including the in-situ effects.

Authors

Sun Q; Zhou G; Tang H; Meng Z; Jain M; Su X; Han W

Journal

Composite Structures, Vol. 261, ,

Publisher

Elsevier

Publication Date

April 1, 2021

DOI

10.1016/j.compstruct.2021.113592

ISSN

0263-8223

Contact the Experts team