Radiation induces stress and transgenerational impacts in the cricket, Acheta domesticus Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • PURPOSE: Radiation exposure of crickets during their fourth juvenile molt inflicted ionizing radiation damage and altered growth rate, adult size at sexual maturity. High levels of ionizing radiation also impacted the subsequent generation, likely via heritable epigenetic mechanisms. Using radiation as a proxy for external stress, we aim to understand the transgenerational impacts of stress on non-irradiated offspring. METHODS AND MATERIALS: We assess the impacts of ionizing radiation on maturation mass and growth rate in F0 male and female house crickets (Acheta domesticus). We also assessed trans-generational impacts of irradiation on growth rate and maturation mass on non-irradiated offspring of irradiated parents compared to non-irradiated controls. RESULTS: Early-life exposure to high levels of ionizing radiation-induced lower growth rate and maturation mass compared to controls (p < .0001). Non-irradiated male F1 offspring of irradiated parents demonstrated significantly lower mass at maturation (p = .0012) and significantly faster time of maturation (p < .0001) compared to F1 non-irradiated controls. CONCLUSION: Our results show that a single early-life exposure to ionizing radiation can alter male offspring development through accelerated maturation and reduced maturation mass.

publication date

  • January 20, 2021