An Adaptive Bayesian Melding Method for Reliability Evaluation Via Limited Failure Data: An Application to the Servo Turret Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • In the early stage of product development, reliability evaluation is an indispensable step before launching a product onto the market. It is not realistic to evaluate the reliability of a new product by a host of reliability tests due to the limiting factors of time and test costs. Evaluating the reliability of products in a short time is a challenging problem. In this paper, an approach is proposed that combines a group of experts’ judgments and limited failure data. Novel features of this approach are that it can reflect various kinds of information without considering the individual weight and reduces aggregation error in the uncertainty quantification of multiple inconsistent pieces of information. First, an expert system is established by the Bayesian best–worst method and fuzzy logic inference, which collects and aggregates a group of expert opinions to estimate the reliability improvement factor. Then, an adaptive Bayesian melding method is investigated to generate a posterior by inaccurate prior knowledge and limited test data; this method is made more computationally efficient by implementing an improved sampling importance resampling algorithm. Finally, an application for the reliability evaluation of a subsystem of a CNC lathe is discussed to illustrate the framework, which is shown to validate the reasonability and robustness of our proposal.

publication date

  • November 2020