Splicing and transcription-associated proteins PSF and p54nrb/NonO bind to the RNA polymerase II CTD Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The carboxyl-terminal domain (CTD) of the largest subunit of eukaryotic RNA polymerase II (pol II) plays an important role in promoting steps of pre-mRNA processing. To identify proteins in human cells that bind to the CTD and that could mediate its functions in pre-mRNA processing, we used the mouse CTD expressed in bacterial cells in affinity chromatography experiments. Two proteins present in HeLa cell extract, the splicing and transcription-associated factors, PSF and p54nrb/NonO, bound specifically and could be purified to virtual homogeneity by chromatography on immobilized CTD matrices. Both hypo- and hyperphosphorylated CTD matrices bound these proteins with similar selectivity. PSF and p54nrb/NonO also copurified with a holoenzyme form of pol II containing hypophosphorylated CTD and could be coimmunoprecipitated with antibodies specific for this and the hyperphosphorylated form of pol II. That PSF and p54nrb/NonO promoted the binding of RNA to immobilized CTD matrices suggested these proteins can interact with the CTD and RNA simultaneously. PSF and p54nrb/NonO may therefore provide a direct physical link between the pol II CTD and pre-mRNA processing components, at both the initiation and elongation phases of transcription.

authors

  • EMILI, ANDREW
  • SHALES, MICHAEL
  • McCracken, Susan
  • XIE, WEIJUN
  • TUCKER, PHILIP W
  • KOBAYASHI, RYUJI
  • BLENCOWE, BENJAMIN J
  • INGLES, C JAMES

publication date

  • September 2002

has subject area

published in

  • RNA  Journal