Subwavelength grating metamaterial waveguides functionalized with tellurium oxide cladding Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We report on the design, fabrication and characterization of subwavelength grating metamaterial waveguides coated with tellurium oxide. The structures are first fabricated using a standard CMOS compatible process on a silicon-on-insulator platform. Amorphous tellurium oxide top cladding material is then deposited via post-process RF magnetron sputtering. The photonic bandstructure is controlled by adjustment of the device geometry, opening a wide range of operating regimes, including subwavelength propagation, slow light and the photonic bandgap, for various wavelength bands within the 1550 nm telecommunications window. Propagation loss of 1.0 ± 0.1 dB/mm is reported for the tellurium oxide-cladded device, compared to 1.5 ± 0.1 dB/mm propagation loss reported for the silicon dioxide-cladded reference structure. This is the first time that a high-index (n > 2) oxide cladding has been demonstrated for subwavelength grating metamaterial waveguides, thus introducing a new material platform for on-chip integrated optics.

publication date

  • June 8, 2020