Home
Scholarly Works
Adaptive split-and-merge segmentation based on...
Journal article

Adaptive split-and-merge segmentation based on piecewise least-square approximation

Abstract

The performance of the classic split-and-merge segmentation algorithm is severely hampered by its rigid split-and-merge processes, which are insensitive to the image semantics. The author proposes efficient algorithms and data structures to optimize the split-and-merge processes by piecewise least-square approximation of image intensity functions. This optimization aims at the unification of segment finding and edge detection. The optimized split-and-merge algorithm is shown to be adaptive to the image semantics and, hence, improves the segmentation validity of the previous algorithms. This algorithm also appears to work well on noisy sources. Since the optimization is done within the split-and-merge framework, the better segmentation performance is achieved at the same order of time complexity as the previous algorithms.<>

Authors

Wu X

Journal

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No. 8, pp. 808–815

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Publication Date

January 1, 1993

DOI

10.1109/34.236248

ISSN

0162-8828

Contact the Experts team