A diagnostic, monitoring, and predictive tool for patients with complex valvular, vascular and ventricular diseases Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Hemodynamics quantification is critically useful for accurate and early diagnosis, but we still lack proper diagnosticmethods for many cardiovascular diseases. Furthermore, as most interventions intend to recover the healthy condition, the ability to monitor and predict hemodynamics following interventions can have significant impacts on saving lives. Predictive methods are rare, enabling prediction of effects of interventions, allowing timely and personalized interventions and helping critical clinical decision making about life-threatening risks based on quantitative data. In this study, an innovative non-invasive imaged-based patient-specific diagnostic, monitoring and predictive tool (called C3VI-CMF) was developed, enabling quantifying (1) details of physiological flow and pressures through the heart and circulatory system; (2) heart function metrics. C3VI-CMF also predicts the breakdown of the effects of each disease constituents on the heart function. Presently, neither of these can be obtained noninvasively in patients and when invasive procedures are undertaken, the collected metrics cannot be by any means as complete as the ones C3VI-CMF provides. C3VI-CMF purposefully uses a limited number of noninvasive input parameters all of which can be measured using Doppler echocardiography and sphygmomanometer. Validation of C3VI-CMF, against cardiac catheterization in forty-nine patients with complex cardiovascular diseases, showed very good agreement with the measurements.

publication date

  • December 2020