Carbon Black-Doped Anatase TiO2 Nanorods for Solar Light-Induced Photocatalytic Degradation of Methylene Blue Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • In this work, C-doped TiO2 nanorods were synthesized through doping carbon black into hydrothermally synthesized solid-state TiO2 nanowires (NWs) via calcination. The effects of carbon content on the morphology, phase structure, crystal structure, and photocatalytic property under both UV and solar light by the degradation of methylene blue (MB) were explored. Besides, the photoelectrochemical property of C-TiO2 was systematically studied to illustrate the solar light degradation mechanism. After doping with C, TiO2 NWs were reduced into nanorods and the surface became rough with dispersed particles. Results showed that C has successfully entered the TiO2 lattice, resulting in the lattice distortion, reduction of band gap, and the formation of C-Ti-O, which expands TiO2 to solar light activation. Comparing with P25 and anatase TiO2 NWs, doping with carbon black showed much higher UV light and solar light photocatalytic activity. The photocatalytic activity was characterized via the degradation of MB, showing that Kap was 0.0328 min-1 under solar light, while 0.1634 min-1 under UV irradiation. The main free radicals involved in methylene blue degradation are H+ and OH•-. Doping with carbon black led to the reduction of photocurrent in a long-term operation, while C-doping reduced the electron-hole recombination and enhanced the carrier migration.

publication date

  • May 5, 2020