RESOLVING THE FAR-IR LINE DEFICIT: PHOTOELECTRIC HEATING AND FAR-IR LINE COOLING IN NGC 1097 AND NGC 4559 Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The physical state of interstellar gas and dust is dependent on the processes which heat and cool this medium. To probe heating and cooling of the ISM over a large range of infrared surface brightness, on sub-kiloparsec scales, we employ line maps of [C \ii] 158 $\mu$m, [O \one] 63 $\mu$m, and [N \ii] 122 $\mu$m in NGC 1097 and NGC 4559, obtained with the PACS spectrometer onboard {\it Herschel}. We matched new observations to existing Spitzer-IRS data that trace the total emission of polycyclic aromatic hydrocarbons (PAHs). We confirm at small scales in these galaxies that the canonical measure of photoelectric heating efficiency, ([C \ii] + [O \one])/TIR, decreases as the far-infrared color, $\nu f_\nu$(70 $\mu$m)/$\nu f_\nu$(100 $\mu$m), increases. In contrast, the ratio of far-infrared (far-IR) cooling to total PAH emission, ([C \ii] + [O \one])/PAH, is a near constant $\sim$6% over a wide range of far-infrared color, 0.5 \textless\ $\nu f_\nu$(70 $\mu$m)/$\nu f_\nu$(100 $\mu$m) $\lesssim$ 0.95. In the warmest regions, where $\nu f_\nu$(70 $\mu$m)/$\nu f_\nu$(100 $\mu$m) $\gtrsim$ 0.95, the ratio ([C \ii] + [O \one])/PAH drops rapidly to 4%. We derived representative values of the local UV radiation density, $G_0$, and the gas density, $n_H$, by comparing our observations to models of photodissociation regions. The ratio $G_0/n_H$, derived from fine-structure lines, is found to correlate with the mean dust-weighted starlight intensity, $$ derived from models of the IR SED. Emission from regions that exhibit a line deficit is characterized by an intense radiation field, indicating that small grains are susceptible to ionization effects. We note that there is a shift in the 7.7 / 11.3 $\mu$m PAH ratio in regions that exhibit a deficit in ([C \ii] + [O \one])/PAH, suggesting that small grains are ionized in these environments.

authors

  • Croxall, Kevin V
  • Smith, JD
  • Wolfire, MG
  • Roussel, H
  • Sandstrom, KM
  • Draine, BT
  • Aniano, G
  • Dale, DA
  • Armus, L
  • Beirão, P
  • Helou, G
  • Bolatto, AD
  • Appleton, PN
  • Brandl, BR
  • Calzetti, D
  • Crocker, AF
  • Galametz, M
  • Groves, BA
  • Hao, C-N
  • Hunt, LK
  • Johnson, BD
  • Kennicutt, RC
  • Koda, J
  • Krause, O
  • Li, Y
  • Meidt, SE
  • Murphy, EJ
  • Rahman, N
  • Rix, H-W
  • Sauvage, M
  • Schinnerer, E
  • Walter, F
  • Wilson, Christine D

publication date

  • March 1, 2012