Platelet adhesion to multimerin 1 in vitro: influences of platelet membrane receptors, von Willebrand factor and shear
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
BACKGROUND: Multimerin 1 (MMRN1) is a large, homopolymeric adhesive protein, stored in platelets and endothelium, that when released, binds to activated platelets, endothelial cells and the extracellular matrix. OBJECTIVES: The goals of our study were to determine if (i) MMRN1 supports adhesion of resting and/or activated platelets under conditions of blood flow, and (ii) if MMRN1 enhances platelet adhesion to types I and III collagen. PATIENTS/METHODS: Platelet adhesion was evaluated using protein-coated microcapillaries, with or without added adhesive proteins and receptor antibodies. Platelets from healthy controls, Glanzmann thrombasthenia (GT) and severe von Willebrand factor (VWF)-deficient donors were tested. RESULTS: MMRN1 supported the adhesion of activated, but not resting, washed platelets over a wide range of shear rates. At low shear (150 s(-1)), this adhesion was supported by integrins alphavbeta3 and glycoprotein (GP) Ibalpha but it did not require integrins alphaIIbbeta3 or VWF. At high shear (1500 s(-1)), adhesion to MMRN1 was supported by beta3 integrin-independent mechanisms, involving GPIbalpha and VWF, that did not require platelet activation when VWF was perfused over MMRN1 prior to platelets. MMRN1 bound to types I and III collagen, independent of VWF, however, its enhancing effects on platelet adhesion to collagen at high shear were VWF dependent. CONCLUSIONS: MMRN1 supports platelet adhesion by VWF-dependent and -independent mechanisms that vary by flow rate. Additionally, MMRN1 binds to, and enhances, platelet adhesion to collagen. These findings suggest that MMRN1 could function as an adhesive ligand that promotes platelet adhesion at sites of vascular injury.